A simulated telescope’s view of the sky in the
presence of a Schwarzschild blackhole

Steven Dorsher

May 5, 2016

1 Introduction

With the LIGO detection, many people are interested in the question of how
blackholes make the sky appear to the external observer. Understanding the
question of how they will lens the presence of stars behind them could help
make blackholes without accretion disks or partners indirectly observable. The
problem of a Schwarzschild blackhole in a vaccuum with light passing by it from
a static field of stars is not a particularly challenging problem and appears to
have been solved numerically in the 1970’s or 1980’s, though I coudn’t find a
specific source. Many people since then have solved more difficult problems for
rotating, perturbed, or asymptotically cosmological spacetimes.

In this project, I numerically integrate the eight coupled ordinary differential
equations governing light rays (null geodesics) backward from a telescope plane
near an ordinary (no spin or charge) in a vaccuum. I iterate over many pixels
in the telescope plane, and determine their origin on the “sky” at some finite
distance away. From that, I reconstruct a png file of what the sky looks like
in the presence of a Schwarzschild black hole, at the location of the Earth, and
a telescope, 7T00M away. Henceforth, the mass of the blackhole will simply be
referred to as M. I will use units of c = G = 1.

2 The geodesic equations

2.1 Overview

In general relativity, the differential equations governing the path matter or light
takes in a vacuum are called the geodesic equations. They are second order rank
four tensor equations, which are separable, resulting in eight coupled ordinary
differential equations. The geodesic equation states that a free particle, which
feels no forces other than the curvature of spacetime that causes gravity, follows
a path that is the shortest path between two points.

2.2 Computation

The geodesic equation is given by

Pt _p dot o (1)
D2 = ey A

Here z* is the pth component of a spacetime four-vector, ' 5 are the Christoffel
connections, and A is an affine parameter that plays the role of proper time for
a null geodesic, since a null geodesic has no rest frame. There is an implicit
summation convention over repeated indices, where upper and lower indices are
connected by the metric g,,, and the inverse metric g"”. [1]

The metric determines the distance between two points in a curved space-
time. In a flat spacetime like the one near Earth (far away from relativistic
sources), the Minkowski metric is

ds® = —dt* + da® + dy* + dz? = —dt* + dr? +r?(d6* + sin® 0dg?) (2)

In matrix form this can be written:

-1.0 0 0
0 1 0 0
Y77 7
T =T =10 010 ®)
0 00 1
In the Schwarzschild metric,
—(1- &) 0 0 0
0 - &)=1 0 0
w=| o "7 &4)
0 0 0 r%sin’@

where R = 2M is the Schwarszchild radius of the blackhole, beyond which no
light can escape. [1] Everything referenced in this section can be looked up in a
book [1], but I have rederived it in Mathematica as well. The goal was to directly
obtain C++ code from Mathematica, but the scope of the project proved too
large and instead I directly parallelized the python prototype.

The inverse metric is given by

—(1- %)*1 0 0 0
0 1-£y o 0
L g— T
g - O 0 ’I”72 O (5)
0 0 0 7 2csc?d

Note that both the metric and the inverse metric are diagonal and static (inde-
pendent of time) in these coordinates, symmetries that will lead to a reduction
in the number of non-zero Christoffel connections.

The Christoffel connections are computed according to the following equa-
tion:

1
Ll = 59" (958r0 + D — 0:90) (6)

Where 0, = 3% for four-coordinates x. [1] These result in 12 independent
Christoffel symbols for the Schwarzschild metric, dependant upon functions of
the coordinates, except time.

Setting the four-velocity u* = %. it is possible to split the four components
of the geodesic equation (Equation 1) into eight coupled ordinary differential
equations using these Christoffel symbols. The results are given in the next
section.

2.3 Result

The eight coupled geodesic equations are

dt

.o 0
dr

- .
do

‘. o
d¢

- o
du 1 e

d—/\t = —r'Fluu,, (11)
duy —er_QFu2 + 11’%7“_2F_1u2 + rFuj + rFsin? 6u? (12)
X 2 £ Y ¢ ?

due - _92 1 . 2

o™ = 2r uTue+2s1n(26‘)u¢, (13)
d

dL):b = —27°_1uTu¢—200t9u9u¢ (14)

Whererl—g.

3 The adaptive fourth order Runga-Kutta method

Because the coordinates become singular at the event horizon— that is, it takes
an infinite amount of time for a particle, as seen by an outside observer, to cross
the event horizon— integrations that pass close to the event horizon or plunge
into it will need an adaptive step size. It will also be necessary to implement
some threshold in adaptive step size, close to the horizon, below which the light
is considered to be close enough to the black hole that it will probably enter
the event horizon if evolved for eternity. The adaptive step size method chosen
was the fourth order adaptive Cash-Karp Runge-Kutta method, as explained in
reference [2].

3.1 Method

The general approach of the Cash-Karp algorithm is to take both a fifth order
and an embedded fourth order Runge-Kutta step, then use the difference as the
error, A;. Since the error should scale as the step size, hq, to the fifth, the new
step can be found by comparison to some desired error, Ay, as follows:

0

Ao | (15)

ho = h1
€

1
If hg is smaller than hq, the algorithm retries the step to obtain better precision.
Otherwise, ho is the new step size for the next step forward in “time” (in our
case, affine parameter). Here € is the tolerance of the algorithm.

There are some complicating details. The step size should not grow or shrink
by too large a factor at each retrial or for each new A step. The exponent for
changing h is subtly different in the presence of a A(that is proportional to h,
so we choose the more stringent requirement of the two exponents to be safe.
We also add a saftey factor to be sure that we do not overshoot. [2]

The specific algorithm for the Cash-Karp Runge-Kutta is given by

kv = hf(xn,yn) (16)
ka = hf(xn,+ agh,yn + bo1 x k1) (17)
ke = hf(xy+ash,yn + be1ki + ... + besks) (18)
Ynil = Yn + Cc1k1 + coko + c3ks + caky + csks + cokg (19)
Yni1 = Yn+ciki+ coka + c3ks + cika + csks + gk (20)
A1 = Ynt1 = Ynp (21)

The scale, Ay, was set using the following dynamically changing function
that takes into account both the absolute size of the field and the derivative of
the field, as well as some small number to prevent it from becoming zero. The
small number, 8 = 10~ 30.

dy
ho?

dX
where y is the 8-vector of the 8 coupled evolving fields. The maximum resulting
step size was used.

Ao = [yl + + 5 (22)

3.2 Testing using a simple harmonic oscillator ODE

I have tested this code using a simple harmonic oscillator ordinary differential
equation. I ran it for 1000 time steps, with a period of 5 time units and an initial
time step of 0.01 time units. The error grew roughly linearly with time, due to
truncation error, and in Figures reffig:shol,fig:sho2,fig:sho3, the tolerance was
decreased by a factor of two and a factor of fourand correspondingly, the error
at equal times is decreased by a factor of two and a factor of four.

Simple harmonic oscillator using adaptive RK4

0.10

0.00

—0.05

Relative error from analytic solution

—0.10

-0.15 - - " - . -
] 100 200 300 400 500 600 700

Time

Figure 1: Relative error for a simple harmonic oscillator with period of 5 over
1000 time steps with initial time step 0.01 and tolerance of 10™4.

d6 Simple harmonic oscillator using adaptive RK4

0.04

0.021

0.00

—0.02|

Relative error from analytic solution

—0.04

—0.06 ; : ; : :
0 100 200 300 400 500 600
Time

Figure 2: Relative error for a simple harmonic oscillator with period of 5 over
1000 time steps with initial time step 0.01 and tolerance of 5 x 1075. Note that
it has half the tolerance of Figure 3.2, and at equal times, it has half the error.

a5 Simple harmonic oscillator using adaptive RK4.

0.015¢

0o10|

ytic solution

0.005}
0.000
—0.005}

—0.010}

Relative error from anal

—0.015}

—0.020 : ——_—— : .
D 0 50 100 150 200 250 300 350 400 450

Time

Figure 3: Relative error for a simple harmonic oscillator with period of 5 over
1000 time steps with initial time step 0.01 and tolerance of 2.5 x 1075. Note
that it has a quarter the tolerance of Figure 3.2, and at equal times, it has a
quarter the error.

4 Testing the geodesic equations with orbits with
elipticity

To test the geodesic equations I implemented in python with something with

an easily identifiably correct solution, I integrated geodesics of massive particles

on “eliptical” orbits around the blackhole. Eliptical orbits in a Schwarzchild

spacetime are not closed orbits, but rather repeat with different periods in phi
and radius, precessing around the black hole.

4.1 Initial data

The initial data was found in Reference ??. Energy, E, and angular momentum,
L, are given by

(p—2—2¢e)(p—2+ 2e)

R iy)
) 2R2
U= s (24)

where p is the semilatus rectum (which governs the distance of the orbit away
from the blackhole) and e is the eccentricity. I chose to start my orbit at
apastron. The distance of apastron can be calculated from
pR
= — 25

" T 50— e) (25)
Since I started in the § = 7/2 plane, df/dX = 0 for all affine parameters \. Since
the metric is static, I could choose to start at any arbitrary time, so I chose ¢t = 0.
Similarly, the evolution is independant of starting affine parameter, so I began
at A=0. I chose p=10, R=2,e=0.2.

4.2 Results

Figure 4.2 demonstrates the periodic nature of the radial coordinate, the increas-
ing and modulated nature of the phi coordinate due to the changing velocities
throughout the orbit, and the fact that the two periods are not the same. Note
that the period of the radial oscillations is between two pi and four pi.

5 Null geodesic initial data

A null geodesic is the path that light travels. It has no rest frame, and no proper
time. For null geodesics, I integrate them backward in time from when they
arrive at the telescope plane to where they are emitted on the sky. Therefore,
their initial data is really the state in which they must end, physically. The
integration initial data needs to be chosen such that the rays are “emitted”
(running time backward) perpendicular to and inward from the telescope plane.

Precession of eliptical orbits in Schwarzschild geometry

a 25 ””“g‘ T T HHH T
% Ez2! r ——
° phi
el .
2 2 2pi —— |
[}
=)
5
= 15+ 1
L
5
€
N 10 - B
©
S
2 5L J
%]
=}
2
©
o 0 | | | | 1
0 200 400 600 800 1000 1200

Affine parameter (lambda)

Figure 4: Eliptical, precessing orbit.

The center of the telescope plane is at a radius of 700 along the x-axis. Thus,
spacetime initial data can be given quite simply in rectangular coordinates.
(t,2,y,2) = (0, Tietes Ypizels Zpizel). Likewise, (ug,uy,u,) = (1,0,0), but the
time component of the four-velocity must be chosen consistently with the null
geodesic condition:

guutu” =0 (26)

The end result is:

up = Ffl\/F—l *u? +r2ud 4 12 sin” Ou? (27)

where FF =1 — % again.
Converting rectangular coordinates to spherical coordinates, we have

t o= t (28)
ro= a2+ y?+22 (29)
0 = cos ! ; (30)
¢ = tan! % (31)

Converting rectangular velocities to spherical velocities requires chains of
partial derivatives. For example:

or n or n or
Up = — Uy + —U —
Y9z

5 9 Uy (32)

Similarly for ug and ug. These simplify substantially given the specific expres-
sion for the rectangular velocities. The resulting spherical velocities, specific to

1000

500

-500
-1000

000
-1000 =

Figure 5: 100 Null geodesics viewed from the side. Some near the middle of the
telescope plane (right hand side) terminate inside the black hole and thus result
in an image of nothing. The rest produce images of the sky at the point where
they terminate. This image is flattened for two reasons. One is that the initial
image plane was half as large in z as in y. The other reason is that the z scale
is smaller than the y scale on this plot.

these initial conditions, are:

x
. = = 33
u = ° (33)
u = — 2 (34)
r3/2 —f—§
Y
= —— 35
Ug I2+y2 ()

To determine the end conditions of the computation, I will have to stop the
loop when the light has reached the edge of the “sky” at r = 1000 or approaches
the blackhole horizon at r» = 2. In practice, the computation stops at 2 plus
10710 if the step in lambda is less than 10~ 14.

5.1 The resulting orbits

Figure 5.1 shows the resulting orbits for a wide image plane of 200 by 100 with
100 evenly sampled geodesics. No remarkable effects can be seen in this figure,
though I know from printed output that some terminate inside the blackhole.

6 Generating a telescope image

There are several steps in creating an image map. After integrating backward
to obtain theta and phi on the sky, the theta and phi coordinates must be

Figure 6: Tycho survey sky map from NASA. Full sky, theta along vertical axis,
phi along horzontal axis.

converted to pixels on the sky image map. Png images are stored in flat row
flat pixelformat for the purposes of this project so that they may more easily be
diveded into chunks and distributed to processes. In flat row flat pixel format,
each pixel is represented by three uint8’s in an array. After one pixel comes the
next in that row. After that row comes the next row, all in one long array with
no sub-arrays. The index of the start pixel for the telescope array (the output
array) is determined by:

telestart=(xpix+ypix*pixelwidth)*3
The start pixel for the location on the sky to be read is determined by:

xout=int (phixskypixelwidth /2./pi)
yout=int (thetaxskypixelheight/pi)
skystart=(xout+yout*skypixelwidth)3

The three pixels following telestart are set to the three pixels following skys-
tart if the geodesic ended in the sky, and are set to red if the geodesic ended in
the blackhole. The skymap used for the external sky is a fully sky NASA image
of the Milky Way from the Tycho survey shown in Figure 6. The horizontal
axis is phi and the vertical axis is theta. It has a resolution of 4096 by 2048.

7 Profiling

7.1 Serial code profile

Code is given in Section 14. The code was profiled using cProfile with the
cumtime command to obtain the “tottime”, or total time that each function
ran. The results are shown below.

64100465 function calls (64098561 primitive calls) in 456.492 seconds

10

Ordered by:

cumulative time

ncalls tottime percall cumtime percall filename:lineno (function)
1 0.005 0.005 456.495 456.495 geodesicl2.py:1(<module>)
1 0.049 0.049 455.993 455.993 geodesicl2.py:301(main)

2500 14.274 0.006 437.151 0.175 geodesicl2.py:189(integrateNullGeo
457700 233.164 0.001 406.786 0.001 geodesicl2.py:75(adaptiveRK4)
3495212 84.325 0.000 119.433 0.000 geodesicl2.py:161(geodesic)

11551770 46.510 0.000 46.510 0.000 {numpy.core.multiarray.array}

1518756 4.131 0.000 27.738 0.000 fromnumeric.py:1621(sum)

1518756 2.732 0.000 21.889 0.000 _methods.py:23(_sum)

4556268 5.910 0.000 21.229 0.000 function_base.py:786(copy)

1518769 19.156 0.000 19.156 0.000 {method ’reduce’ of ’numpy.ufunc’
1 3.721 3.721 18.789 18.789 png.py:1974(read_flat)

27846638 12.796 0.000 12.796 0.000 {range}

2049 0.024 0.000 11.263 0.005 png.py:1688(iterstraight)

2048 0.012 0.000 10.919 0.005 png.py:1472(undo_filter)

2048 10.630 0.005 10.905 0.005 png.py:2406(undo_filter_up)

These results demonstrate that the adaptive Runge-Kutta method requires
most of the time, but it is not possible to parallelize over iterations of the
adaptive Runge-Kutta method because subsequent steps depend on previous
steps. The closest, independent, surrounding option is to parallelize over pixels.
However, we expect load balancing issues because some integrations will run
much longer than others, especially those that approach the blackhole (due to
the coordinate singularity). In fact, these problems are seen in Sections ?7.

8 Timing estimate

All of my timing was done comparing the parallel program with one process to
the parallel program with more processes. I realize there is some overhead of
paralellization, but it should be much less than the time required for integration
in a densely enough sampled map.

The run time for a single process should be, at most, equal to the number of
pixels (wh) times the Runge-Kutta step time (¢) times the maximum number
of Runge-Kutta steps per pixel (N).

T = whtN (36)

where w is width and A is height in pixels. For a single process, for w = 32
and h = 32, I find ¢ = 0.000472310777906 s, N = 1022, and T = 97.651763916.
The upper bound I obtain from these numbers is 494 s, which is a factor of 5
larger than the measured runtime. The reason for the difference is primarily
load imbalancing— most pixels don’t take nearly so many steps (N) to run as
the longest pixel, which plunges into the blackhole.

11

Weak scaling does not exist due to load imbalances in the presence of the blackhol
0.9 T T —

0.8 + 4
0.7 B
0.6 B

0.5 B

Total parallel time (s)

0.4 B

0.3 + B

02 n ool n ool n ool n Lo
1 10 100 1000 10000

Number of pixels in telescope view = Number of processes

Figure 7: Weak scaling is not present— the load increases with quadrupoling of
both processors and load.

9 Weak scaling

Weak scaling states that if you double your work load and double your number
of processes, you should get the same time. I tested this with doubling in both
the width and height dimension and quadrupoling my processes. My data is
shown below.

#w h n N trk4 T

1 11 948 0.000573131857039 0.553431987762

16 16 256 975 0.000633819052514 0.786194086075
2 2 4 168 0.00106210084189 0.296684980392

32 32 1024 1022 0.000523686408997 0.869103193283
4 4 16 193 0.0014385967057 0.363858938217

8 8 64 940 0.000662297898151 0.735347032547

Figure 9 shows this data as a function of number of pixels or number of
processes. For zero pixels, the time is high because the single pixel is located
at the center of the telescope field of view and plunges into the blackhole. At
low numbers of pixels, the field of view is poorly sampled and no geodesics cross
the horizon. After 64 pixels, the field is well enough sampled to have geodesics
crossing the horizon, and again the execution time rises, because of the load
imbalancing.

We can futher investigate this load imbalancing issue. I have plotted the
maximum number of adaptive Runge-Kutta iterations (N) as a function of
processes in Figure 9. It demonstrates that this same sudden change occurs,
at the same number of processes, in the maximum number of integration steps.
This is strong evidence for load imbalancing as the source of the problem.

12

Sensitivity of integration length to pixel resolution relative to blackhole scale
1100 — T —
L + _
10007 +
900 - g

800 - B
700 - =
600 - f
500 f
400 - B
300 B
200 + =

100 n ol n Lol n Lol n Lo
1 10 100 1000 10000

Number of pixels in telescope view

Maximum number of integrations for a single pixel

Figure 8: The maximum integration length, IV, as a function of number of pixels
in telescope view, or number of processes. This demonstrates the sensitivity to
load imbalancing in weak scaling.

10 Amdahl’s law

Amdahl’s law states that speedup is given by

Ty 1

(37)
where p is the percent parallelized and n is the number of processes. Strong
scaling is how the speedup varies with a fixed problem size. To determine this,
I used a 32 by 32 pixel telescope map on Blue Waters. My timing data is shown
below.

#w h n N trkd T
32 32 1024 1022 0.000820902677683 1.10371899605
32 32 1 1022 0.000472310777906 97.651763916

32 32 16 1022 0.000555939086781 13.3469061852
32 32 256 1022 0.000575474568538 2.14842200279
32 32 4 1022 0.000547813355208 36.3236739635
32 32 64 1022 0.00068316065485 3.74180793762

Figure 10 demonstrates that I have sub-Amdahl’s law scaling at all number
of processes, but that I do in fact achieve scaling of the same power law form, just
with a different exponent. I performed a fit to determine the percent parallel.
Within error on order 107°, the percent parallel was exactly 1. My timing data
finds a percent parallel on order 10~* different from 1, and that is the number I
have used in this plot. That is unsurprising, given that I have defined my total
time to exclude input and output, which leaves little else except the parallel
region. Probably the reason for the sub-Amdahl’s law scaling is load balancing

13

Comparison of 32 by 32 pixel sky image to Amdahl's law

0

S 1000 ¢ oy o R
b= £ Data +
S Amdahl's law

c

)

IS

IS

S 100 + + 4
o F]
£ +

°

< +

v

£

o 10 ¢ J
1S £]
=] F +]
9]

© +

(]

Qo

E 1 n ol n Lol n Lol n Lo
° 1 10 100 1000 10000

Number of processes

Figure 9: Sub Amdahl’s law scaling is obtained due to load balancing problems.

problems, as demonstrated in Sections ??. The reason the sudden difference
at a certain process number occurs in weak scaling but not strong scaling is
because in weak scaling the process number is tied to the pixel density, which
is tied to whether or not there is a geodesic that enters the blackhole horizon,
a binary event.

11 Image

I was unable to obtain a pixel map using one of the supercomputers, so Figure 11,
generated using four processes on my laptop, is my final result. Super Mike does
not have mpidpy. Blue Waters does not have the python png package. With
further time, it is possible a solution would have existed, but I did not have it.

12 Summary

In summary, I have implemented a parallel program in python, using mpidpy, to
integrate light rays backward in time from a telescope field of view to their source
position on the sky, forming an image on a telescope plane. It is parallelized by
pixel. In the image, the absense of light inside the horizon, the overdensity of
stars near the blackhole horizon, and the warping of the stellar field at several
times the radius of the horizon are all visible.

My timing estimates are imprecise due to load imbalancing, but my upper
bound is not violated. My program does not have good weak scaling, with
a sudden change where the pixel resolution goes from containing pixels that
have trajectories that take them into the blackhole and those that do not. In
strong scaling, the form of Amdahl’s law is echoed, but it appears to be roughly

14

Figure 10: A 192 by 192 pixel image in a 50 by 50 M image plane generated
using 4 processes. The overdensity of stars close to the black hole horizon is
visible. So is the warping of the image at several times the horizon radius. From
previous images ['ve seen, I know that it should return to a normal star field
far outside this ring.

15

the square root in magnitude. All of these issues are due to load imbalancing,
which must be addressed if this project will be continued. If this project will
be continued, it is likely that it will be rewritten in C++ as well.

13 Bibliography

References

[1] Sean M. Carroll An Introduction to General Relativity Spacetime and Ge-
ometry Addison Wesley, San Francisco, 2004.

[2] William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flan-
nery Numerical Recipes in Fortran: The Art of Scientific Computing Cam-
bridge University Press, New York, 2nd edition, 1992.

[3] Anath Grama, Anshul Gupta, George Karypis, Vipin Kumar Introduction
to Parallel Computing Pearson Education Limited, Essex, 2nd edition, 2003.

[4] Adam Pound, Eric Poisson Osculating orbits in Schwarzchild spacetime, with
an application to extreme mass-ratio inspirals Physical Review D 77, 0044013,
2008.

14 Appendix: Serial code

import numpy as np

from math import pi,sin,cos,sqrt,atan,acos
from matplotlib import pyplot ,image
import PIL, png

from scipy import misc

a=np.array ([0, .2, .3, .6, 1., 7./8.])

b=np.array ([[0.,0.,0.,0.,0.],[.2,0.,0.,0.,0.],[3./40.,9./40.,0.,0.,0.],[3./10.,
¢ = np.array([37./378., 0., 250./621., 125./594., 0., 512./1771.])

cstar = np.array ([2825./27648., 0., 18575./48384., 13525./55296., 277./14336., 0
de = np.array ([277./64512.,0.,—6925./370944.,6925./202752. ,277./14336., —277./70:
lena=len (a)

t is lamb, affine parameter
vy is u, four velocity, or x, four position

def initialize (pixelcoord ,Rplane, pixelheight ,pixelwidth ,skypixelwidth ,skypixelhe

#set origin of pixel plane at x axis
t = 0.

16

FF 3k

def

x = Rplane

y = (pixelcoord[0] —pixelwidth /2.)+ximagewidth/float (pixelwidth)

z = (pixelcoord[l]—pixelheight /2.)ximageheight/float (pixelheight)
r= sqrt (x«xt+y*y+z*z)

phi = atan(y/x)

theta = acos(z/r)

#initial u perpendicular to plane.

#magnitude of u is arbitrary— affine parameter makes it rescalable
#(ut)"2—(uy)"2—(ux)"2—(uz)"2=0 so ut = 4+—ux

#for x decreasing as t increases, ut = —ux (inward)

uy = 0.

uz = 0.

ux = 1.

invr = 1./r

invrsq = invr*xinvr

#rhosq = x*x + yx*y

#facrrho= rhosq4rxr

#for this specific case, where ux = 1:
ur = —x/r

#utheta = —xx*z*z/sqrt (rhosq)/r/facrrho
#uphi = y/rhosq

utheta = x*zxinvrxinvrsqxsqrt(l.—zxzxinvrsq)
uphi = —y /(xxx+yx*y)
rmRs = r—Rs

st = sin(theta)

ut = sqrt ((ursursr/rmRstrxrxuthetaxuthetatrxrxstxstxuphixuphi)/rmRsxr)
initcoords =np.array([t, r, theta, phi, ut, ur, utheta, uphi])

coords = initcoords

rmRs2 = coords[1] —Rs

testnull = —rmRs2/coords[1]x coords[4]* coords[4]+ coords[5]* coords[5]* coords |
#testnull = —rmRs/rxut*ut+ursursr/rmRs+r+r+*(uthetaxuthetat+st*stxuphixuphi)
#print (testnull)
#print (testnull /max(np. absolute (initcoords [4:8])))

return initcoords

initializeElliptical (eccentricity ,semilatusr ,Rs):

r2 = semilatusrx0.5%xRs/(1.—eccentricity)

print (eccentricity , semilatusr, Rs,r2)

theta = pi/2.

phi = 0.

t = 0.

utheta = 0.

temp = 1./(semilatusr — 3. — eccentricity*eccentricity)

17

angularL, = 0.5xsemilatusrxRsxsqrt (temp)

energy=sqrt ((semilatusr —2.—2.xeccentricity)*(semilatusr —2.+2.xeccentricity)/
uphi = angularL/r2/r2

ur = 0.

ut = energy/(1.—Rs/r2)

return np.array ([t,r2,theta,phi,ut,ur,utheta,uphi])

def adaptiveRK4(t,y,h,func ,maxfunc,arg,yscale ,epsilon):
fadapt = open(” adaptout.txt”, 7a”)
leny=len (y)
safetyfac = 0.9
pgrow =-—0.20
pshrink =-0.25
errcon = 1.89e—4 #see NR in Fortran
hnew=h /2.
#hlast = h
while True:
j and i are reversed from Numerical Recipes book (page 711)
#loop over y indices
k=np.zeros ((leny ,lena))
tprimearg=t
yprime = np.copy (y)
yprimestar = np.copy(y)
for j in range(0,len(a)): #for all terms summed in method
tprimearg = t+a[j]xh
yprimearg = np.copy(y)
for n in range(0,leny): #over all variables in y vector
for i in range(0,j): #over all indices of k
#update for next term of k in calculation
yprimearg [n]+=b[j,i]*k[n,i]
k[:,j]=hxfunc(tprimearg ,yprimearg ,arg)
yprime = y4np.sum(np.multiply (¢,k),axis=1)
yerr = mnp.sum(np.multiply (de,k),axis=1)
yprimestar =np.copy(y)+ np.sum(np.multiply (cstar ,k),axis=1)
#delta0 = np.absolute(np. multiply (epsilon , yscale))
#yerr = yprime — yprimestar
errmax = maxfunc(yerr ,yscale ,yprime)
errmax/=epsilon
if (errmax>1):
hnew = safetyfac«hxpow(errmax , pshrink)
if (hnew<0.1xh):
hnew=.1xh
h=hnew
outlist=np.array ([t,yprime[0],yprime[1l],yprime[2],yprime[3],yprime |
for item in outlist:
tfadapt . write("%s\t” % item)

H F 3

18

fadapt . write (”\n”)

else:
if (errmax>errcon):
hnew = safetyfac+hspow(errmax ,pgrow)
else:
hnew = 5.xh

outlist=np.array ([t,yprime[0],yprime[1l],yprime[2],yprime[3],yprime |
for item in outlist:
tadapt . write("%s\t” % item)
fadapt . write (”\n”)
fadapt . close ()
return t+4h,yprimestar ,hnew
#false break for testing
#break
#problem has something to do with break conditions
#print (” breaking”)
#tprime = t+h
#print (h)
tprime = t+h
fadapt . close ()
return tprime ,yprimestar ,hnew
return tprime ,yprimestar ,h

FF I3k

def linearMaxFunc (yerr ,yscale ,yprime):
errmax = max(np.absolute(yerr/yscale))
return errmax

def sphericalMaxFunc(yerr ,yscale ,x):
rscale=yscale[1]/x[1]
invst = 1./sin(x[2])
errmax = max(abs(x[0]/yscale[0]),abs(x[1]/yscale[1]),abs(x[2]/yscale[2]*rsca
return errmax

def ignoretMaxFunc(yerr,yscale ,x):
errmax = max(np.absolute(yerr[1:8]/yscale[1:8]))
return errmax

def rk4(t,y,h,func,arg):
kl=hsfunc(t,y,arg) #no t on right hand side of these equations
k2 = hxfunc(t+0.5%h,y+0.5%kl, arg)
k3 = hxfunc(t+0.5%h,y+0.5%k2,arg)
k4 = hxfunc(t+h,y+k3, arg)
t=t+h
return t,np.copy(y)+k1/6.+k2/3.+k3/3.+k4/6.

19

def geodesic (lamb,x,Rs):
#returns a vector of the four acceleration
#declare some constants
rmRs=x[1] —Rs
ct=cos (x[2])
st=sin (x[2])
invrmRs = 1./rmRs
invr = 1./x[1]
templ = 0.5%xRs*xinvr
x7sq = x[7]*x[7]
xbinvr=x[5]xinvr
#calculate dut

dut = —Rsxx[4]*x[5]* invr*invrmRs
#calculate dur

cut = —templsrmRsxinvr*xinvr

cur = templxinvrmRs

cutheta = rmRs
cuphi = rmRs*st*st
#print ("x=",x)
dur =cut*x[4]*x[4]+ cur*x[5]*x[5]+ cuthetaxx[6]*x[6]+ cuphixx7sq
#calculate dutheta
dutheta = —2.%x[6]*x5invr+ctxstxx7sq
#calculate duphi
duphi =—2.%(x5invr+ct/st*x[6])*x[7]
rhs=np.array ([x[4],x[5],x[6],x[7],dut, dur, dutheta, duphi])
#print (cut ,cur,cutheta, cuphi)
return np.array([[4] ,x[5],x[6],x[7],dut, dur, dutheta, duphi])
def integrateNullGeodesic (xpix, ypix, pixelheight ,pixelwidth, skypixelheight ,sky
pixelcoord=np.array ([xpix , ypix])
coords = initialize (pixelcoord ,Rplane, pixelheight , pixelwidth ,skypixelwidth s
r=coords [1]
lamb=0.
color =1
n=0
h=hinit
phi=coords [3]
while (r<=Router):
yscale =np.absolute(coords)+np.absolute (hxgeodesic (lamb, coords ,Rs))+tiny
lamb , coords ,h=adaptiveRK4 (lamb, coords ,h, geodesic ,linearMaxFunc,Rs, yscale
r=coords [1]
phi=coords 3]
if (r<Rfac*Rs) and (h<heps):
color =0
break

20

n+=1

if ((n%10000)==0): print (n,r,coords[2],phi, h)
if (coords[2] <0.):

temp = (—coords[2])%(pi)

coords[2]=pi—temp
else:

coords[2]%=pi

if (coords[3] <0.):
temp=(—coords[3])% (2.* pi)
coords[3]=2.% pi—temp
else:
coords[3]%=(2.xpi)
rmRs2 = coords[1] —Rs
#testnull = —rmRs2/coords|[1]* coords[4]* coords[4]+ coords[5]* coords[5]* coords]|
#if (abs(testnull)>1.e—7): print (xpix,ypix,” Null test failed”)
telestart = (xpix+ypix*pixelwidth)*3
xout = int (coords[3]xskypixelwidth /2./pi)
yout = int (coords[2]*skypixelheight/pi)
skystart = (xout+yout sskypixelwidth)=3
return skystart ,telestart ,color

#parabola test
def parabola(t,y,ab):
ab[0] = a
ab[1] =b
ynew=np.array ([axt+b,axt+b])
return ynew

def sinusoid(t,y,params):
amp = params [0]
omega = params [1]
phase = params|[2]
ynew = ampxomegaxcos (omegaxt+phase)
ynewarray = np.array ([ynew,ynew]|)
return ynewarray

def sho(t,y,omega): #y[0] is u, y[1] is x

shorhs = np.array([—omegaxomegaxy[1], y[0]])
return shorhs

H#a=3.

#b=1.

#ab = np.array([a, b])

def test ():
amp = 1.0

omega = 2.%xpi/5.

21

phase =0.
tiny = 1.e—-30
params = np.array ([amp, omega, phase])
t=np.zeros (1000)
y=np.zeros ((len(t),2))
h=1.e-2
yn=np. zeros (2)
yn[l]=1.0
tn=0.0
yscale =np.absolute (yn)+np.absolute (np. multiply (h,sho(tn,yn,omega)))+tiny
epsilon=1.e—4
for n in range(0,len(t)):
yscale =np.absolute (yn)+np.absolute (hxsho (tn,yn,omega))+tiny
#print (n, yscale)
t [n]=tn
y[n,:]=yn
#tn ,yn =rk4 (tn,yn,h,sho,omega)
#print (tn,yn,h,” hello”)
tn ,yn,h=adaptiveRK4(tn ,yn,h,sho,linearMaxFunc,omega, yscale ,epsilon)
#print (tn,yn,h)
pyplot. figure ()
pyplot . xlabel (” Time”)
tn ,yn,h=adaptiveRK4(tn ,yn,h,sho,omega,yscale ,epsilon)

#pyplot . ylabel (” Relative error from analytic solution”)
#pyplot . title ("RK4 solution to dx/dt = omegaxcos(omegaxt)”)
#pyplot . ylim ([—1.,1.])
pyplot.xlim ([0.,10.])
pyplot.plot (t,y[:,1])
pyplot . plot (t,np.cos(omegaxt))

pyplot.plot(t, y[:,1] —np.cos(omegaxt))

#pyplot . plot (t,(y[:,1] —0.5%axtxt—bxt)/(0.5xa*xtxt+bx*t))
pyplot .show ()

#tested by comparison to Mathematica using ”testrule”

#x=np.array ([1.27,1.86,.3,.2])
#Rs=.3

#print gammat(x,Rs)

#print gammar(x,Rs)

#print gammatheta (x,Rs)

#print gammaphi(x,Rs)

return 0

#sky is 4096 by 2048

22

#skypixelheight = 2048
#skypixelwidth = 4096

def main ():
#image plane’s center is at Rplane<Router (radius of outer shell)

#h=1.e—3
hinit=1.e—1
#h=1.e—4

Router = 1000.

Rplane = 700.

Rs = 2.

pixelwidth = 51

pixelheight = 51

every = 1

deltalamb = 1.e—1

#epsilon = 1.e—6

#yscale = [500.,500.,pi,2.xpi,—1.,1.,1.,1.]
imagewidth = 50;

imageheight = 50;

tiny = 1.e—30

epsilon=1.e—8

eccentricity = 0.2

Rfac = 1.+1.e—10

heps = 1l.e—14

semilatusr = 10.0 #affine = np.zeros(20000)
fsky = open(”skymap.png”,”r”)

reader = png.Reader (fsky)

skypixelwidth, skypixelheight , skypixels, metadata=reader.read_flat ()
telepixels = np.zeros ((pixelwidthspixelheight *x3),dtype=np.uint8)

for ypix in range(1,pixelheight ,every):
for xpix in range(1,pixelwidth ,every):
skystart , telestart ,color=integrateNullGeodesic (xpix, ypix, pixelheigl
if (color==1):
#skytemp = skypixels[xout,yout]
#for pix in range (3):
#telepixels[telestart+pix]= skytemp [pix]
telepixels[telestart:telestart+3]=skypixels[skystart:skystart+3]
else:
telepixels[telestart]=255 #leave other two indices zero

ftele = open(” teleview.png”, "w”)

telewrite=png. Writer (width=pixelwidth , height=pixelheight , greyscale=False ,alp
telewrite . write_array (ftele ,telepixels)

ftele.close ()

fsky.close ()

23

#scipy .imsave?
pyplot . figure ()
pyplot . plot (affine ,xout[:,0])
pyplot .show ()

pyplot. figure ()
pyplot . plot (affine ,xout[:,1])
pyplot .show ()

pyplot. figure ()
pyplot . plot (affine ,xout [:,2])
pyplot .show ()

pyplot. figure ()
pyplot . plot (affine ,xout[:,3])
pyplot .show ()

pyplot. figure ()
pyplot . plot (affine

pyplot .show ()

hs)

FFHFH FFFHF OHHFE I FEFFH

main ()

#test ()
15 Appendix: Parallel code

15.1 Python code

import numpy as np

from math import pi,sin,cos,sqrt,atan,acos
#from scipy import misc

from sys import argv

from mpidpy import MPI

from time import time, ctime

a=np.array ([0, .2, .3, .6, 1., 7./8.])

b=np.array ([[0.,0.,0.,0.,0.],[.2,0.,0.,0.,0.],[3./40.,9./40.,0.,0.,0.],[3./10.,
¢ = np.array([37./378., 0., 250./621., 125./594., 0., 512./1771.])

cstar = np.array([2825./27648., 0., 18575./48384., 13525./55296., 277./14336., 0
dec = np.array ([277./64512.,0., -6925./370944.,6925./202752.,277./14336., —277./70!
lena=len (a)

t is lamb, affine parameter
vy is u, four velocity, or x, four position

24

def initialize (pixelcoord ,Rplane, pixelheight ,pixelwidth ,skypixelwidth ,skypixelhe

def

#set origin of pixel plane at x axis

t = 0.

x = Rplane

y = (pixelcoord[0] —(pixelwidth —1)/2.)ximagewidth/float (pixelwidth)

z = (pixelcoord[l] —(pixelheight —1)/2.)ximageheight/float (pixelheight)
r= sqrt (x«xt+y*y+zx*z)

phi = atan(y/x)

theta = acos(z/r)

#initial u perpendicular to plane.

#magnitude of u is arbitrary— affine parameter makes it rescalable
#(ut)"2—(uy)"2—(ux)"2—(uz)"2=0 so ut = 4+—ux

#for x decreasing as t increases, ut = —ux (inward)
uy = 0.

uz = 0.

ux = 1.

invr = 1./r

invrsq = invr*xinvr

ur = —x/r

utheta = x*zxinvrxinvrsqxsqrt(l.—zxzxinvrsq)

uphi = —y /(x*x+ty*y)

rmRs = r—Rs

st = sin(theta)

ut = sqrt ((ursursr/rmRstrxrxuthetaxuthetatrxrxstxstxuphixuphi)/rmRsxr)
initcoords =np.array ([t, r, theta, phi, ut, ur, utheta, uphi])

return initcoords

initializeElliptical (eccentricity ,semilatusr ,Rs):
r2 = semilatusrx0.5%xRs/(1.—eccentricity)

print (eccentricity , semilatusr, Rs,r2)

theta = pi/2.

phi = 0.

t = 0.

utheta = 0.

temp = 1./(semilatusr — 3. — eccentricity*eccentricity)
angularL = 0.5xsemilatusr*Rsxsqrt (temp)

energy=sqrt ((semilatusr —2.—2.xeccentricity)*(semilatusr —2.42.xeccentricity)/
uphi = angularL/r2/r2

ur = 0.

ut = energy/(1.—Rs/r2)

return np.array ([t,r2,theta,phi,ut,ur,utheta,uphi])

25

def adaptiveRK4(t,y,h,func ,maxfunc,arg,yscale ,epsilon):
leny=len (y)
safetyfac = 0.9
pgrow =-—0.20
pshrink =-0.25
errcon = 1.89e—4 #see NR in Fortran

hnew=h /2.
nsteps=0
#hlast = h

while True:
j and i are reversed from Numerical Recipes book (page 711)
#loop over y indices
k=np.zeros ((leny ,lena))
tprimearg=t
yprime = np.copy (y)
yprimestar = np.copy(y)
for j in range(0,len(a)): #for all terms summed in method
tprimearg = t+a[j]xh
yprimearg = np.copy(y)
for n in range(0,leny): #over all variables in y vector
for i in range(0,j): #over all indices of k
#update for next term of k in calculation
yprimearg [n]+=b[j,i]*k[n,i]
k[:,j]=hxfunc(tprimearg ,yprimearg ,arg)
yprime = y+np.sum(np.multiply (c,k),axis=1)

yerr = mnp.sum(np.multiply (dc,k),axis=1)
yprimestar =np.copy(y)+ np.sum(np.multiply (cstar ,k),axis=1)
errmax = maxfunc(yerr,yscale ,yprime)

errmax/=epsilon
if (errmax>1):
hnew = safetyfac«hxpow(errmax , pshrink)
if (hnew<0.1xh):
hnew=.1xh
h=hnew
nsteps+=1
else:
if (errmax>errcon):
hnew = safetyfacxh*pow(errmax ,pgrow)
else:
hnew = 5.xh
nsteps+=1
return nsteps,t+h,yprimestar ,hnew
tprime = t+h
return tprime ,yprimestar ,hnew

26

def linearMaxFunc (yerr ,yscale ,yprime):
errmax = max(np.absolute(yerr/yscale))
return errmax

def geodesic (lamb,x,Rs):
#returns a vector of the four acceleration
#declare some constants
rmRs=x[1] —Rs
ct=cos (x[2])
st=sin (x[2])
invrmRs = 1./rmRs
invr = 1./x[1]
templ = 0.5%xRs*xinvr
x7sq = x[7]*x[7]
xbinvr=x[5]xinvr
#calculate dut

dut = —Rsxx[4]*x[5]*invr*xinvrmRs
#calculate dur

cut = —templsrmRs*xinvr*invr

cur = templxinvrmRs

cutheta = rmRs
cuphi = rmRs*st*st
#print ("x=",x)
dur =cut*x[4]*x[4]+ cur*x[5]*x[5]+ cuthetaxx[6]*x[6]+ cuphixx7sq
#calculate dutheta
dutheta = —2.%x[6]*x5invr+ct*xstxx7sq
#calculate duphi
duphi =—2.%(x5invr+ct/st*xx[6])*x[7]
rhs=np.array ([x[4],x[5],x[6],x[7],dut, dur, dutheta, duphi])
#print (cut ,cur,cutheta, cuphi)
return np.array([[4] ,x[5],x[6],x[7],dut, dur, dutheta, duphi])
def integrateNullGeodesic (xpix, ypix, pixelheight ,pixelwidth, skypixelheight ,sky
pixelcoord=np.array ([xpix , ypix])
coords = initialize (pixelcoord ,Rplane, pixelheight , pixelwidth ,skypixelwidth ;s
r=coords [1]
lamb=0.
color =1
n=0
h=hinit
phi=coords [3]
totnsteps=0
while (r<=Router):
yscale =np.absolute(coords)+np.absolute (hxgeodesic (lamb, coords ,Rs))+tiny

27

nsteps ,lamb , coords ,h=adaptiveRK4 (lamb , coords ,h, geodesic ,linearMaxFunc,Rs
r=coords [1]
phi=coords [3]
totnstepst+=nsteps
if (r<Rfac*Rs) and (h<heps):
color =0
break
n+=1
if ((n%10000)==0): print (n,r,coords[2],phi,h)
if (coords[2] <0.):
temp = (—coords[2])%(pi)
coords[2]=pi—temp
else:
coords|[2]%=pi

if (coords[3]<0.):
temp=(—coords[3])%(2.*pi)
coords[3]=2.% pi—temp
else:
coords[3]%=(2.xpi)
rmRs2 = coords|[1] —Rs
telestart = (xpix+ypix*pixelwidth)*3
xout = int (coords[3]xskypixelwidth /2./pi)
yout = int (coords[2]*skypixelheight/pi)
skystart = (xout+yout sskypixelwidth)=3
return totnsteps ,skystart, telestart ,color

def main ():

comm = MPI.COMMWORLD

id= comm. Get_rank ()

wsize= comm. Get_size ()

tstart = MPI. Wtime ()

#fsky = open(”skymap.png”,”r”)

#reader = Reader (fsky)

#skypixelwidth , skypixelheight , skypixels , metadata=reader.read_flat ()
skypixelwidth = 4096

skypixelheight = 2048

skypixels = np.zeros ((skypixelwidth*skypixelheight«3),dtype=np.uint8)
pixelwidth = int (argv[1l])

pixelheight = int (argv[2])

tskymapstart = MPI. Wtime ()

telepixels = np.zeros ((pixelwidthspixelheight *3),dtype=np.uint8)
colorpixels = np.zeros ((pixelwidthspixelheight),dtype=np.uint8)
skystartall = np.zeros ((pixelwidth*pixelheight), dtype=np.uint32)

28

telestartall = np.zeros ((pixelwidthxpixelheight),dtype=np.uint32)
colorall = np.zeros ((pixelwidthxpixelheight),dtype=np.uint8)
totnstepsall=np.zeros ((wsize),dtype=np.uint32)

tskymapend = MPI. Wtime ()

tskymap = tskymapend—tskymapstart

tmin = 1.e6
tpercparmin=1.e6
hinit=1.e—1
#h=1.e—4

Router = 1000.
Rplane = 700.

Rs = 2.

every = 1
deltalamb = 1.e—1
imagewidth = 50.;
imageheight = 50.;
tiny = 1.e—-30
epsilon=1.e—8
eccentricity = 0.2
Rfac = 1.+1.e—10
heps = 1.e—14
semilatusr = 10.0

tstartpp=MPI. Wtime () #percent parallelized
numperprocess = pixelheight*pixelwidth/wsize
skystart=np.zeros ((numperprocess),dtype=np.int32)
telestart=np.zeros ((numperprocess),dtype=np.int32)
color = np.zeros ((numperprocess),dtype=np.int8)
totnsteps=np.zeros ((numperprocess),dtype=np.int32)
trkdall=np.zeros ((numperprocess) ,dtype=np. float)
ttelestop = MPI. Wtime ()
ttele = ttelestop—tstartpp
trkd=float (" inf”)
for index in range(numperprocess):
ypix = int ((id+*numperprocess+index)/pixelwidth)
xpix = (id*numperprocesst+index)%pixelwidth
tstartrk4=MPI. Wtime ()
totnsteps|[index],skystart [index],telestart [index], color[index]=integrate:
tendrk4=MPI. Wtime ()
trk4=min (trk4 ,(tendrk4—tstartrk4)/float (totnsteps[index]))
totnstepsmax=max(totnsteps)
tstoppp = MPI. Wtime ()
tpercpar=tstoppp—tstartpp

29

F=FHFH I

comm. Barrier ()

if

id==0:

totnstepsmaxall=0

else:

totnstepsmaxall=None

comm. Barrier ()

totnstepsmaxall=comm.reduce (totnstepsmax ,op=MPI.MAX, root=0)
tskymapall = comm.reduce (tskymap, op=MPI.MAX, root=0)
tteleall = comm.reduce(ttele ,op=MPI.MAX, root=0)

comm . Gatherv (skystart ,skystartall ,root=0)

comm. Gatherv (telestart , telestartall , root=0)

comm. Gatherv (color , colorall , root=0)

trkdmin=comm. reduce (trk4 ,op=MPI.MIN, root=0)

comm. Barrier ()

tend = MPI. Wtime ()
tall = tend—tstart
if id==0:

tindexstart = MPI. Wtime ()
for index in range(pixelheight*pixelwidth):

if (colorall [index]==1):
telepixels[telestartall [index]: telestartall [index]+3]=skypixels |
else:
telepixels|[telestartall [index]]=255 #leave other two indices zer
tindexend = MPI. Wtime ()
tindex = tindexend—tindexstart
id==0:

#twritestart = MPI. Wtime ()

#ftele = open(’teleview_{pw}_{ph}_{ws}.png’. format (pw=pixelwidth ,ph=pixe
#telewrite=Writer (width=pixelwidth , height=pixelheight , greyscale=False , al
#telewrite . write_array (ftele ,telepixels)

#ftele.close ()

#twriteend=MPI. Wtime ()

#twrite = twriteend—twritestart

#fsky . close ()

comm. Barrier ()

tmax = comm.reduce (tall ;MPI.MAX, root=0)

tpercparmin = comm.reduce (tpercpar/tall ;op=MPI.MIN, root=0)
comm. Barrier ()

if (id==0):

print (” Telescope dimensions in M’, 2.ximagewidth, 2.ximageheight)

(
print (” Telescope resolution”, pixelwidth, pixelheight)
print (”Skymap resolution”, skypixelwidth, skypixelheight)
(
(

)
7

print (” Schwarzschild radius in M”, 2.xRs)
print (” Outer radius in M”, 2.xRouter)

30

print (” Telescope radius in M”, 2.xRplane)

print (”Number of processes = 7 wsize)

print (”Maximum number of integration steps taken is” totnstepsmaxall)
(
(

7

)

print (" The time for a single step of the RK4 is” trk4dmin)

print (” Total runtime = 7 tmax)

print (” Fraction parallel = 7, tpercparmin)

print pixelwidth , pixelheight , wsize ,totnstepsmaxall ,trk4dmin ,tmax,tpercpari

FFHEFHF I

MPI. Finalize ()
main ()

15.2 Strong scaling batch file

#!/bin /bash

set the number of nodes

set the number of PEs per node

#PBS —1 nodes=64:ppn=16:xe

set the wallclock time

#PBS —1 walltime=1:00:00

set the job name

#PBS —N SDstrong

set the job stdout and stderr

#PBS —e $PBS_JOBID. err

#PBS —o $PBS_JOBID. out

set email notification

#PBS —m bea

#PBS —M sdorsh1@Ilsu.edu

In case of multiple allocations, select which one to charge

#PBS —A babq

Set umask so users in my group can read job stdout and stderr files

#PBS W umask=0027

#H##export MPICH NEMESIS_ASYNC_PROGRESS=1

#H#export MPICHMAX THREAD_SAFETY=multiple

module load bwpy

module load bwpy—mpi

cd $PBS_.O_-WORKDIR

aprun —n 1 python geodesicl9.py 32 32 > Strongscaling/out32_.32_1.$PBS_.JOBID
aprun —n 4 python geodesicl9.py 32 32 > Strongscaling/out32_.32_4.$PBS_.JOBID
aprun —n 16 python geodesicl9.py 32 32 > Strongscaling/out32.32_16.$PBS_.JOBID
aprun —n 64 python geodesicl9.py 32 32 > Strongscaling/out32.32_64.3$PBS_.JOBID
aprun —n 256 python geodesicl9.py 32 32 > Strongscaling/out32.32_256.$PBS_JOBID
aprun —n 1024 python geodesicl9.py 32 32 > Strongscaling/out32.32.1024.$PBS_JOB
##aprun —n 128 . /mmvmpi —N 16 16384 > out16384_128.$PBS_JOBID

##aprun —n 128 . /mmvmpi —N 16 102400 > out102400.128.$PBS_JOBID

15.3 Weak scaling batch file

31

#!/bin /bash

##H+ set the number of nodes

set the number of PEs per node

#PBS —1 nodes=64:ppn=16:xe

set the wallclock time

#PBS —1 walltime=1:00:00

set the job name

#PBS —N SDweak

set the job stdout and stderr

#PBS —e $PBS_JOBID.err

#PBS —o $PBS_JOBID. out

#H#H# set email notification

#PBS —m bea

#PBS —M sdorsh1@lsu.edu

In case of multiple allocations, select which one to charge

#PBS —A babq

Set umask so users in my group can read job stdout and stderr files
#PBS -W umask=0027

H#H##export MPICH NEMESIS_ ASYNC_PROGRESS=1

H##export MPICHMAX THREAD SAFETY=multiple

module load bwpy

module load bwpy—mpi

cd $PBS_.O_WORKDIR

aprun —n 1 python geodesicl9.py 1 1 > Weakscaling/outl_1_1.$PBS_JOBID
aprun —n 4 python geodesicl9.py 2 2 > Weakscaling/out2_2_4.$PBS_JOBID
aprun —n 16 python geodesicl9.py 4 4 > Weakscaling/out4_4_16.$PBS_JOBID
aprun —n 64 python geodesicl9.py 8 8 > Weakscaling/out8_.8_64.$PBS_JOBID
aprun —n 256 python geodesicl9.py 16 16 > Weakscaling/out16.16_256.$PBS_JOBID
aprun —n 1024 python geodesicl9.py 32 32 > Weakscaling/out32.32_.1024.$PBS_JOBID
#Htaprun —n 128 . /mmvmpi —N 16 16384 > out16384_128.$PBS_JOBID

#HHtaprun —n 128 . /mmvmpi —N 16 102400 > out102400-128.$PBS_JOBID

32

